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Abstract

Coding information is the main source of heterogeneity (non-randomness) in the sequences of
bacterial genomes. This information can be naturally modeled by analysing cluster structures in
the “in-phase” triplet distributions of relatively short genomic fragments (200-400bp). We found a
universal 7-cluster structure in bacterial genomic sequences and explained its properties. We show
that codon usage of bacterial genomes is a multi-linear function of their genomic G+C-content with
high accuracy. Based on the analysis of 143 completely sequenced bacterial genomes available in
Genbank in August 2004, we show that there are four “pure” types of the 7-cluster structure observed.
All 143 cluster animated 3D-scatters are collected in a database and is made available on our web-site:
http://www.ihes.fr/∼zinovyev/7clusters. The finding can be readily introduced into any software for
gene prediction, sequence alignment or bacterial genomes classification

1 Introduction

The bacterial genomes are compact genomes: most of the sequence contains coding information.
Hence any statistical study of bacterial genomic sequence will detect coding information as the main
source of heterogeneity (non-randomness). This is confirmed by mining sequences “from scratch”,
without use of any biological information, using entropic or Hidden Markov Modeling (HMM) sta-
tistical approaches (for examples, see [1], [2], [3], [18]). All these methods can be seen as specific
clustering of relatively short genomic fragments of length in the range 200-400bp comparable to the
average length of a coding information piece.

Surprisingly, not much is known about the properties of the cluster structure itself, independently
on the gene recognition problems, where it is implicitly used since long time ago (see, for example,
early paper [5] about famous GENMARK gene-predictor, or [20] about GLIMMER approach). Only
recently the structure was described explicitly. In [12], [13], [24] and [25] the structure was visualized
in the 64-dimensional space of non-overlapping triplet distributions for several genomes. Also the
same dataset was visualized in [14] and [11] using non-linear principal manifolds. In [19] several
particular cases of this structure were observed in the context of the Z-curve methodology in the
9-dimensional space of Z-coordinates: it was claimed that the structure has interesting flower-like
pattern but can be observed only for GC-rich genomes. This is somehow in contradiction with the
results of [24], published before, where the same flower-like picture was demonstrated for AT-rich
genome of Helicobacter pylori. This fact shows that this simple and basic structure is far from being
completely understood and described.

The problem can be stated in the following way: there is a set of genomic fragments of length
100-1000 bp representing a genome almost uniformly. There are various ways to produce this set,
for example, by sliding window with a given step of sliding (in this case sequence assembly is not
generally needed), or it might be a full set of ORFs (in this case one needs to know the assembled
sequence). We construct a distribution of points in a multidimensional space of statistics calculated
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on the fragments and study the cluster structure of this distribution. The following questions arise:
What is the number of clusters? What is the character of their mutual locations? Is there a “thin
structure” in the clusters? How the structure depends on the properties of genomic sequence, can we
predict it?

Every fragment can be characterized by a “frequency dictionary” of short words (see examples
in [8], [9], [10], [15]). For our purposes we use frequencies of non-overlapping triplets, counted from
the first basepair of a fragment. Thus every fragment is a point in 64-dimensional space of triplet
frequencies. This choice is not unique, moreover, we use dimension reduction techniques to simplify
this description and take the essential features. The cluster structure we are going to describe is
universal in the sense that it is observed in any bacterial genome and with any type of statistics
which takes into account coding phaseshifts. The structure is basic in the sense that it is revealed in
the analysis in the first place, serving as the principal source of sequence non-randomness. In [12],
[13], [19], [24] it was shown that even simple clustering methods like K-Means or Fuzzy K-Means give
good results in application of the structure to gene-finding.

One example of the observed structure is shown on Fig.1. In short, this is a PCA plot of the point
distribution. Referring for the details of the visualization to the Methods section, we stop now on
basic properties of the structure. First, it consists of 7 clusters.This fact is rather natural. Indeed,
we clip fragments only from the forward strand and every fragment can contain 1) piece of coding
region from the forward strand, with three possible shifts relatively to the first fragment position; 2)
coding information from the backward strand, with three possible frameshifts; 3) non-coding region;
4) mix of coding and non-coding information: these fragments introduce noise in our distribution,
but their relative concentration is not high. Second, the structure is well pronounced, the clusters are
separated from each other with visible gaps. This means that most of learning (and even self-learning)
techniques aiming at separation of the clusters from each other will work very well, which is the case
for bacterial gene-finders that have performance more than 90% in most cases (for recent overview,
see [17]). Third, the structure is well represented by a 3D-plot (in this case it is even almost flat, i.e.
2D). Forth, it is indeed has symmetric and appealing flower-like pattern, hinting at there should be
a symmetry in our statistics governing the pattern formation.

In this paper we show how the structure depends on very general properties of genomic sequence
and show that it almost uniquely depends on a single parameter: the genomic G+C content. Also,
based on analysis of 143 completely sequenced genomes, available in Genbank in August 2004, we
describe four “pure” types of the structure observed in bacterial genomic sequences.

The outline of the paper is the following: first we introduce phaseshift and complementary re-
verse operators, helping to describe the structure, then we show that in nature we have almost
one-dimensional set of triplet distributions. After that we explain the properties of the 7-cluster
structure and describe four “pure” types of the structures, observed for bacterial genomes. The
paper is finalized by the description of the methods utilized and conclusion.

2 Phaseshifts in triplet distributions

Let us denote frequencies of non-overlapping triplets for a given fragment as fijk, where i, j, k ∈
{A, C, G, T}, such as fACT , for example, is a relative (normalized) frequency of ACT triplet.

One can introduce such natural operations over frequency distribution as phase shifts P(1) , P(2)

and complementary reversion CR:

P (1)fijk ≡
∑

l,m,n

flijfkmn, P (2)fijk ≡
∑

l,m,n

flmifjkn, f̂ijk ≡ CRfijk ≡ fk̂ ĵ î, (1)

where î is complementary to i, i.e., Â = T, Ĉ = G, etc.
The phase-shift operator P (n) calculates a new triplet distribution, counted with a frame-shift

on n positions, in the hypothesis that no correlations exist in the order of triplets in the initial
phase. Complementary reversion constructs the distribution of codons from a coding region in the
complementary strand, counted from the forward strand (“shadow” frequency distribution).

Phaseshift operators approximate the shifted triplet frequency as superposition of a phase-specific
nucleotide frequency and a diplet frequency. This can be better understood if we rewrite definitions
(1) in the following way:

P (1)fijk ≡
∑

l

flij

∑

m,n

fkmn ≡ d
(right)
ij p

(1)
k , P (2)fijk ≡

∑

l,m

flmi

∑

n

fjkn ≡ p
(3)
i d

(left)
jk (2)

We introduce the notion of mean-field (or context free) approximation of the triplet distributions
in the following way:
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Figure 1: Seven cluster structure of Pseudomonas aeruginosa genomic sequence (G+C-content 67%). On
the left pane the PCA plot of data distribution is shown. The colors specify a frameshift, black circles
correspond to non-coding regions. On the right pane the structure is presented in a schematic way, in
three projections (first and second principal components on the top, first and third in the middle, second
and third in the bottom), with “radii” of the clusters schematically visualized. The diagrams show the
codon position-specific nucleotide frequencies (right top and right bottom) as deviations from the average
nucleotide frequency and codon position-specific G+C-content (left top).
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mijk = p
(1)
i p

(2)
j p

(3)
k , p

(1)
i =

∑

jk

fijk, p
(2)
j =

∑

ik

fijk, p
(3)
k =

∑

ij

fijk, (3)

i.e. the mean-field approximation is the distribution constructed from the initial triplet distribution
neglecting all possible correlations in the order of nucleotides. The p

(k)
i are the frequencies of the

ith nucleotide (i ∈{A,C,G,T}) at the kth position of a codon (k = 1..3). In this way we model
the 64 frequencies of the triplet distribution using only 12 frequencies of the three position-specific
nucleotide distributions. This approximation is widely used in the literature (see, for example, [3]).
All triplet distributions that can be represented in the form (3) belong to a 12-dimensional curved

manifold M, parametrized by 12 frequencies p
(k)
i . The manifold is embedded in the 64-dimensional

space of all possible triplet distributions T1.
It is easy to understand that any phase-shift for mijk only rotates the upper (position) indexes:

P (1)mijk = p
(2)
i p

(3)
j p

(1)
k = mkij , P (2)mijk =

(

P (1)
)2

mijk = p
(3)
i p

(1)
j p

(2)
k = mjki. (4)

Also it is worth noticing that applying the P (1) (or P (2)) operator several times to the initial

triplet distribution we get the (p
(1)
i p

(2)
j p

(3)
k ,p

(2)
i p

(3)
j p

(1)
k ,p

(3)
i p

(1)
j p

(2)
k ) triangle:

(

P (1)
)3

fijk = mijk. (5)

Operator
(

P (1)
)3

acts as a projector operator from full 64-dimensional distribution space T onto
the 12-dimensional manifold M:

(

P (1)
)3

: T → M. (6)

On the manifold M of all possible mijk we have P (2) = (P (1))2, therefore, there are only two
operators: phaseshift P : Pmijk = mjki and reversion C : Cmijk = mk̂ĵî. There are following basic
equalities:

P 3 = 1, C2 = 1, PCP = C. (7)

Let us consider a point m on M. It corresponds to a set of 12 phase-specific nucleotide frequencies
p
(1)
i , p

(2)
i and p

(3)
i , i ∈ {A, C, G, T}. Applying operators P and C in all possible combinations we

obtain an orbit on M, consisting of 6 points: m,Pm, P 2m, Cm, PCm, P 2Cm. Theoretically, some
points can coincide, but only in such a way that the resulting orbit will consist of 1 (fully degenerated
case), 3 (partially degenerated case) or 6 (non-degenerated case) points. The fully degenerated case
corresponds to the triplet distribution with the highest possible entropy among all distributions with
the same nucleotide composition:

fijk = pipjpk, pi =
∑

mn

(fimn + fmni + fnim)

3
. (8)

This distribution (completely random) is described by 4 nucleotide frequencies, with any infor-
mation about position in the triplet lost. In our T space it is a 3-dimensional (due to normalization
equality) simplex on M. For bacterial genomes this distribution can serve as an approximate (zero-
order accuracy) model for triplet composition in non-coding regions.

Now let us consider triplet distributions corresponding to the codon usage of bacterial genomes,
i.e. the subset of naturally occured triplet distributions. It was found that they could be reasonably
well approximated by their mean-field distributions, i.e. they are located close to M. Moreover, in
the next section we show that in nature, for 143 completely sequenced bacterial genomes, the mijk

distributions are tightly located along one-dimensional curve on M. The curve can be parametrized
by the genomic G+C-content.

3 One-dimensional model of codon usage

Twelve dependencies p
(1)
i (GC), p

(2)
i (GC) and p

(3)
i (GC), i ∈ {A, C, G, T}, where GC is genomic G+C-

content, are presented on Fig.2(a-d) for 143 fully sequenced bacterial genomes available in Genbank
in August, 2004. These dependencies are almost linear. This fact, despite it’s simplicity, was not

1The normalization equality
∑

ijk
fijk = 1 makes all distributions to form a standard 63-dimensional simplex in R64.

For M one has 3 independent normalizations:
∑

i
p
(k)
i = 1, k = 1..3, these equalities distinguish a 9-dimensional set

(image of the product of three 3-dimensional standard simplexes) in M, where all normalized distributions are located.
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explicitly demonstrated before. The numerous results on the structure of codon usage described
previously in literature (see, for example, [22],[23],[21]) are in agreement with this picture.

Fig.2e demonstrates that the codon position-specific G+C-content is a linear function of genomic
G+C-content, in each position. In [19] analogous results were shown for 33 completed genomes.

For our purposes, it is important to notice that for the genomes with G+C-content higher than
∼ 60% there is the same well-defined structure in their codon usage: the G+C-content in the first
codon position is close to the average of three values, the second is lower than the average and the
third is essentially higher than the average. This pattern can be denoted in the form of simple
GC-signature: 0−+. In the next section we develop more complicated signature to classify 7-cluster
structures, corresponding to the orbits, generated by P and C operators in a set of genomic fragments
of 300-400bp length.

The linear functions, describing codon usage, are slightly different for eubacteria and achaea
genomes. Significant deviations are observed for p

(1)
A , p

(1)
C , p

(3)
G , p

(1)
G , p

(3)
T functions. For the others, the

dependencies are statistically indistinguishable.
One surprising conclusion follows from Fig.2: if we take the set of triplet frequencies, occurred

in nature and corresponding to the codon usage of bacterial genomes, then in the 12-dimensional
space of codon position-specific nucleotide frequencies this set appears almost as a straight line (more
precisely, two close lines, one for eubacteria and the other for archaea). If we look at this picture from
the 64-dimensional space of triplet frequencies T, then one sees that the distributions are located close
to the curved M manifold of the mean-field approximations, embedded in the space. As a result,
when analyzing the structure of the distribution of bacterial codon usage, one detects that the points
are located along two curves. These curves coincide at their AT-rich ends and diverge at GC-rich
ends. Moving along these curves one meets all bacterial genomes. Genomes with close G+C-content
generally have close codon usage. Many evidences for this structure were reported in studies on
multivariate analysis of bacterial codon usage (for example, see Figure 6 from [16]), but here we first
explain the most general structure of these representations in a clear and formal way.

4 Properties and types of the 7-cluster structure

In the paper [19] the authors claim that the codon position-specific nucleotide frequencies (represented
as Z-coordinates) in GC-rich genomes show flower-like cluster structure, and the phenomenon is
not observed in other genomes. Here we explain the phenomenon and demonstrate other types
of structures observed in genomes and that the type of the structure is related to the pattern of
symmetric properties of codon usage.

First of all, we point out to the fact that the space used in [19] is a specific projection from
64-dimensional space of triplet frequencies. The 9-dimensional phenomenon is also can be observed
in 64-dimensional space and in 12-dimensional space of codon position-specific nucleotide frequencies.

Let us consider the context free approximation of codon usage introduced above:

mijk = p
(1)
i p

(2)
j p

(3)
k (9)

and consider 3D space with the following coordinates:

x = p
(1)
G + p

(1)
C − fGC , y = p

(2)
G + p

(2)
C − fGC , z = p

(3)
G + p

(3)
C − fGC (10)

In fact, x, y and z are deviations of GC-content in the first, second and the third position from
average GC-content fGC of coding regions. In all GC-rich genomes (starting from fGC > 60%) their
codon usage context-free approximation has the following structure (see Fig.2e): x ≈ 0, y < 0, z > 0.
We can denote this pattern as 0−+. Applying phaseshift and reverse operators defined above (notice
that C operator does not change G+C-content, it only reverses the signture), we obtain the following
orbit: {0 − +,− + 0, +0−} and {+ − 0,−0+, 0 + −}. If now we consider a 3D grid consisting of
27 nodes as shown on Fig.3, corresponding to all possible patterns (GC-signatures), then it is easy
to understand that the orbit corresponds to the points of where the grid is cross-sectioned by a
plane, coming through the 000 point perpendicular to the {−−−,+ + +} diagonal. It is well known
fact that in this situation the form of the intersection is a regular hexagon. The 000 point in our
picture corresponds to the center of the non-coding cluster (this is the fully degenerated distribution
described above), where all phases have been mixed. The {− − −, + + +} diagonal corresponds to
the direction of the fastest G+C-content increase. Hence, this model explains the following features
of the flower-like structure observed in GC-rich (G + C > 60%) genomes:

1) In the 64-dimensional space the centers of clusters are situated close to a distinguished 2D-plane,
forming regular hexagonal structure.

5



0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5 A1 = −0.47*GC+0.50
A2 = −0.33*GC+0.46
A3 = −0.91*GC+0.66

A1 = −0.51*GC+0.54
A2 = −0.29*GC+0.44
A3 = −0.95*GC+0.70

GC−content

p
h

a
s
e

−
s
p

e
c
if
ic

 A
 f

re
q

u
e

n
c
y

a)

0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5 T1 = −0.26*GC+0.30
T2 = −0.12*GC+0.36
T3 = −0.89*GC+0.69

T1 = −0.28*GC+0.29
T2 = −0.14*GC+0.38
T3 = −0.77*GC+0.59

GC−content

p
h

a
s
e

−
s
p

e
c
if
ic

 T
 f

re
q

u
e

n
c
y

b)

0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5 C1 = 0.41*GC+0.01
C2 = 0.24*GC+0.11
C3 = 1.04*GC −0.23

C1 = 0.39*GC −0.01
C2 = 0.23*GC+0.10
C3 = 0.98*GC −0.20

GC−content

p
h

a
s
e

−
s
p

e
c
if
ic

 C
 f

re
q

u
e

n
c
y

c)

0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5 G1 = 0.32*GC+0.19
G2 = 0.21*GC+0.07
G3 = 0.77*GC −0.12

G1 = 0.40*GC+0.17
G2 = 0.20*GC+0.08
G3 = 0.75*GC −0.09

GC−content

p
h

a
s
e

−
s
p

e
c
if
ic

 G
 f

re
q

u
e

n
c
y

d)

0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
GC1 = 0.73*GC+0.20
GC2 = 0.46*GC+0.18
GC3 = 1.80*GC −0.36

GC1 = 0.79*GC+0.16
GC2 = 0.43*GC+0.17
GC3 = 1.73*GC −0.29

GC−content

p
h

a
s
e

−
s
p

e
c
if
ic

 G
C

 f
re

q
u

e
n

c
y

e)

Figure 2: Codon position-specific nucleotide frequencies (a-d) and codon position-specific GC-content
(e). Solid line and empty points correspond to 124 completed eubacterial genomes, broken line and filled
points correspond to 19 completed archaeal genomes.
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Figure 3: Model of the flower-like cluster structure. Broken line corresponds to the direction of the fastest
G+C-content increase.

2) The third principal component (perpendicular to the cluster plane) is the direction of G+C-
content increase (i.e., the gradient of G+C-content linear function, defined in the 64-dimensional
triplet space).

In most flower-like structures the cluster that corresponds to the non-coding regions is slightly
displaced in the direction perpendicular to the main cluster plane. This happens because G+C-
content of non-coding regions is generally slightly lower than of coding regions.

Now let us consider general case of genome with any given genomic G+C-content. The type of
the 7-cluster structure depends on values of 12 functions p

(1)
i , p

(2)
i , p

(3)
i , i ∈ {A, C, G, T}. Applying

phasesift and reverse operators, one obtains an orbit which serves as a skeleton of the cluster structure.
The orbit structure reflects symmetries in the set of values of these 12 functions with respect to the
P and C operators.

We describe these symmetries in the following simplified manner. Let us order the 12 values in
the form of 6 × 2 table:

sij =
p
(1)
A p

(2)
A p

(3)
A p

(1)
T p

(2)
T p

(3)
T

p
(1)
G p

(2)
G p

(3)
G p

(1)
C p

(2)
C p

(3)
C

(11)

Then the reverse operator C simply reads the table from right to the left:

Csij =
p
(3)
T p

(2)
T p

(1)
T p

(3)
A p

(2)
A p

(1)
A

p
(3)
C p

(2)
C p

(1)
C p

(3)
G p

(2)
G p

(1)
G

. (12)

The phaseshift operator P rotates the values in the table by threes, for every letter:

Psij =
p
(3)
A p

(1)
A p

(2)
A p

(3)
T p

(1)
T p

(2)
T

p
(3)
G p

(1)
G p

(2)
G p

(3)
C p

(1)
C p

(2)
C

. (13)

We reduce the description of s in the following way: every entry in the table is substituted by “+”,
“−” and “0”, if the corresponding value is bigger then the average over the same letter frequencies,
smaller or in the [average − 0.01; average + 0.01] interval respectively. For example, for a set of

frequencies p
(1)
A = 0.3,p

(2)
A = 0.5, p

(3)
A = 0.401, we substitute p

(1)
A → −, p

(2)
A → +, p

(3)
A → 0. We call

“signature” the new table ŝij with reduced description.
Using linear folmulas from the Fig.2(a-d) and calculating the ŝij tables for the range [0.2; 0.8] of

G+C-content, we obtain 19 possible signatures in the intervals of genomic G+C-content, listed in
Table 1.

There are 67 different signatures observed for really occurred p
(k)
i -values for 143 genomes consid-

ered in this work (see our web-site [7] with supplementary materials). Most of them differ from the
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--+--+

+--++-
[0.200; 0.255)

000-++

+--0+-
[0.331; 0.373)

0+--++

+---0+
[0.434; 0.482)

--+--+

+--0+-
[0.255; 0.265)

0+0-++

+--0+-
[0.373; 0.385)

0+--++

+-0-0+
[0.482; 0.487)

--+-0+

+--0+-
[0.265; 0.289)

0+--++

+--0+-
[0.385; 0.388)

0+--++

+-0--+
[0.487; 0.502)

-0+-0+

+--0+-
[0.289; 0.316)

0+--++

+---+-
[0.388; 0.391)

0+--+0

+-0--+
[0.502; 0.515)

00+-0+

+--0+-
[0.316; 0.326)

0+--++

+---+0
[0.391; 0.424)

++--+0

+-0--+
[0.515; 0.542)

000-0+

+--0+-
[0.326; 0.331)

0+--++

+---00
[0.424; 0.434)

++--+0

+-+--+
[0.542; 0.545)

++--+-

+-+--+
[0.545; 0.800)

Table 1: Nineteen possible signatures for one-dimensional codon usage model

signature in Table 1 with corresponding G+C value only by changing one of the “+” or “−” for “0”
or vise versa.

From Table 1 one can see that the only conserved positions, independent on genomic G+C-content
for the interval [0.20; 0.80] are p

(1)
T (always “−”), p

(1)
G (always “+”), p

(2)
G (always “−”). This holds

true also for all really observed signatures. This observation confirms already known “invariants” of
codon usage described in [22],[23],[21].

Let us look at several typical examples. All genomes with genomic G+C-content higher then 60%
have the following genomic signature:

ŝij(GC > 60%) =
++--+-

+-+--+
. (14)

This signature uniformly reflects the previously mentioned GC-signature (“0−+”): pairs p
(1)
A ,p

(1)
T

and p
(1)
G ,p

(1)
C compensate the signs of each other to give “0” in the first position of GC-signature,

while in the second position we have “+” for A and T and “−” for G and C, and vice versa for the
third position. As a result, we obtain the flower-like structure. On Fig.4 we visualize the orbit for
Streptomyces coelicolor, genome with high G+C-content: 72%. Together with the orbit we visualize
the distance matrix for the skeleton, where the distances are calculated in the full 64-dimensional
triplet frequency space T. Black color on the plot corresponds to zero distance, white for the biggest
value in the matrix. The most informative 3 × 3 block of the matrix is in the left bottom corner (or
top right, by symmetry): it describes mutual distances between the vertexes of two skeleton triangles.
The left top and right bottom 3× 3 blocks contain equal values, since the sides of the triangles have
the same length.

Our second example is genome of Fusobacterium nucleatum (AT-rich genome, G+C-content is
27%), Fig.4b. The signature is

ŝij(F.nucleatum) =
--+-0+

+---+-
. (15)

This pattern, commonly observed in AT-rich genomes, can be called “parallel triangles”. Notice
that two parallel triangles are rotated with respect to their corresponding phase labels: the F0 vertex
is located in front of the B1 vertex.

The third example is genome of Bacillus halodurans (G+C-content is 44%):

ŝij(B.halodurans) =
-+--++

+--000
. (16)

We refer to this pattern as “perpendicular triangles”. Another example of the pattern is genome
of Bacillus subtilis. All non-diagonal distances in the distance matrix have in this case approximately
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Figure 4: Four typical examples of the 7-cluster structure: a) genome of S.coelicolor (GC=72%), flower-
like structure; b) genome of F.nucleatum(GC=27%), “parallel triangles”; c) B.halodurans (GC=44%),
“perpendicular triangles”; d) E.coli (GC=51%), degenerated case.
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the same value. This structure can be easily recognised from it’s signature: the second row has three
zeros while the first one is almost palindromic. As we will see in the next example, palindromic
rows in the signature (or such that can be made palindromic applying the phaseshift P operator)
make zero contribution to the diagonal of the “inter-triangle” part of the distance matrix. This is
easy to understand, because the reverse operator C reads the signature from right to the left. The
rows with three zeros in different phase positions (when, for example, the phase specific nucleotide
frequencies for one letter are equal to their average, as happened in this case) give approximately
equal contribution to every value in the “inter-triangle” part of the distance matrix. The resulting
matrix corresponds to the “perpendicular triangles” pattern. We should notice that the distance
matrix showed on Fig.4c can not be effectively represented as a distribution of 6 points in 3D. Thus
the “perpendicular triangles” structure shown on Fig.4c is only an approximate picture, the real
configuration is almost 6-dimensional, due to the distance matrix symmetry.

In the region of G+C-content about 51% we observe a group of genomes with almost palindromic
signatures. One typical example is the genome of Escherichia coli:

ŝij(E.coli) =
++--++

+-+0-+
. (17)

The resulting pattern is a degenerated case: two triangles are co-located, without phase label
rotation (F0 is approximately in the same point as B0). The distance matrix consists of 4 almost
identical 3 × 3 blocks. As a result, we have situation, when 7-cluster structure effectively consists of
only 4 clusters, one for every pair F0-B0, F1-B1, F2-B2 and a non-coding cluster.

The same degenerated case but with rotation of labels (F0-B1,F1-B2,F2-B0) is observed for some
AT-rich genomes. For example, for the genome of Wigglesworthia brevipalpis (G+C-content equals
22%) the signature

ŝij(W.brevipalpis) =
0-+-0+

+---+-
(18)

becomes a perfect palindrom after applying the phaseshift operator:

P ŝij(W.brevipalpis) =
-+00+-

--++--
. (19)

One possible biological consequence (and even explanation) of this degeneracy is existence of
overlapping genes: in this case the same codons can be used to encode proteins simultaneously in the
forward and backward strands on a regular basis (without frameshift for G+C-content around 50%
and with a frameshift for AT-rich genomes), with the same codon usage.

The four patterns are typical for triplet distributions of bacterial genomes observed in nature. The
other ones combine features from these four “pure” types. In general, going along the G+C-content
scale, we meet first “parallel triangles” which will transform gradually to “perpendicular triangles”.
On this way one can even meet structures resembling flower-like type in one of the 2D-projections,
like for the genome of Helicobacter pylori (see our web-site [7] and in [24] for the illustration). Then
the pattern goes to the degenerated case with genomic G+C-content around 50% and signatures
close to palindromic. After the degeneracy disappears, the pairs F0-B0, F1-B1, F2-B2 diverge in the
same 2D-plane and after 55% threshold in G+C-content we almost exclusively have the flower-like
structures. It is possible to browse the animated scatters of 7-cluster structures observed for every of
143 genomes on our web-site [7].

5 Web-site on cluster structures in genomic word fre-

quency distributions

To make the images and graphs of 143 genomes 7-cluster structures available for wide public, we
established a web-site [7] for cluster structures in genomic word frequency distributions.

For the moment our database contains 143 completely sequenced bacterial genomes and two
types of cluster structures: the 7-cluster structure and the gene codon usage cluster structure. When
browsing the database, a user can look at animated 3D-representations of these multidimensional
cluster structures. For the description of the structures and the methods we refer the reader to the
“intro” and “methods” pages of the web-site.

Another possibility which is provided on our web-site is browsing large-scale “maps” of various
spaces where all 143 genomes can be embedded simultaneously. One example is the codon usage map:
one point on the map is a genome, and close points correspond to the genomes with close codon usage.
In fact, this is the same 64-dimensional triplet frequency space, used for construction of the 7-cluster
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structure, “observed” from a big distance. This gives the following hierarchy of maps: general map
of codon usage in 143 genomes, then the 7-cluster structure of in-phase triplet distributions, then the
“thin structure” of every coding cluster: gene codon usage map. Clicking on a genome at the first
map, the user “zooms” to it’s more detailed representations.

We strongly believe that the information in the database will help to advance existing tools for
bacterial genomes analysis. Also it can serve as rich illustrative material for those who study sequence
bioinformatics.

6 Methods

For visualization of the 7-cluster structure a data set for every 143 genome2 was prepared in the
following way:

1) A Genbank file with completed genome was downloaded from the Genbank FTP-site. Using
BioJava package [4] the complete sequence and the annotation was parsed. In the case when the
genome had two chromosomes, the sequences of both were concantenated. The short sequences of
plasmids were ignored.

2) Let N be length of a given sequence S and Si be a letter in the ith position of S. We define a
step size p and a fragment size W . For given p, W and k = 1..[N−W

p
] we clip a fragment of length W

in the sequence, centered in i = w/2+pk. In every fragment we count frequencies of non-overlapping
triplets:

count(ci1ci2ci3) =

W/3−1
∑

i=0

comp(ci1ci2ci3 , Si∗3+1Si∗3+2Si∗3+3), (20)

where comp(word1, word2) is a string comparison function that has value 1 if word1 equals word2
and 0 otherwise. Here ci is a letter from genetic alphabet (c1 = A, c2 = C, c3 = G, c4 = T ).

For every fragment a frequency vector is defined:

X
ci1

ci2
ci3

i =
count(ci1ci2ci3)

∑

j1,j2j3
cj1cj2cj3

(21)

All words, which contain non-standard letters like N, S, W, are ignored.
The data set Xj

i , j = 1..[N−W
p

] is normalized to have unity standard deviation and zero mean.
3) We assign to the fragment a label accordingly to the Genbank annotation of the CDS features

(including hypothetical ones) that include the center of the fragment. If the center is inside a CDS
feature then the reading frame and the strand of the CDS feature are determined and the fragment
is assigned one of F0,F1,F2,B0,B1,B2 label. In the second case the label is J.

4) Standard PCA-analysis is performed and the first three principal components are calculated.
They form form a 3D-orthonormal basis in the 64-dimensional space. Every point is projected into
the basis, thus we assign three coordinates for every point .

To create a schema of 7-cluster structure (see Fig.1) the following method was utilized. We
calculated the mean point yL for every subset with a given label L.

For the set of centroids yF0, yF1, yF2, yB0, yB1, yB2 a distance matrix of euclidean distances was
calculated and visualized using classical MDS.

To visualize the “radii” of the subsets, a mean squared distance d(p) to the centroid p was calculated
(intraclass dispersion). To visualize the value on 2D plane, we have to introduce dimension correction
factor, so the radius drawn on the picture equals

r(p) =

√

2

4k
d(p) (22)

The form of the cluster is not always spherical and often intersection of radii do not reflect real
overlapping of classes in high-dimensional space. To show how good the classes are separated actually,
we developed the following method for cluster contour visualization. To create a contour for class
p, we calculate averages of all positive and negative projections on the vectors connecting centroid p
and 6 other centroids i = 1..6.

np

i =
yi − yp

||yi − yp||
,np

i (Xk) = (Xk − yp ,np

i ) (23)

2We took only different species from GenBank, choosing the first alphabetically available strain in the list.

11



f p

i =

∑

n
p

i
(Xk )>0

np

i
∑

n
p

i
(Xk )>0

1
, bp

i =

∑

n
p

i
(Xk )<0

np

i
∑

n
p

i
(Xk )<0

1
(24)

Then, using the 2D MDS plot where every vector (yp)′ has 2 coordinates, we put 12 points tf , tb

analogously.

(np

i )′ =
(yi)′ − (yp)′

||(yi)′ − (yp)′||
, (25)

tf
i = (yi)′ + fp

i (np
i )′, tb

i = (yi)′ + bp
i (np

i )
′, i = 1..6 (26)

Using a smoothing procedure in polar coordinates we create a smooth contour approximating
these 12 points.

7 Discussion

In this paper we prove the universal 7-cluster structure in triplet distributions of bacterial genomes.
Some hints at this structure appeared long time ago, but only recently it was explicitly demonstrated
and studied.

The 7-cluster structure is the main source of sequence heterogeneity (non-randomness) in the
genomes of bacterial genomes. In this sense, our 7 clusters is the basic model of bacterial genome
sequence. We demonstrated that there are four basic “pure” types of this model, observed in nature:
“parallel triangles”, “perpendicular triangles”, degenerated case and the flower-like type (see Fig.4).

To explain the properties and types of the structure, which occur in natural bacterial genomic
sequences, we studied 143 bacterial genomes available in Genbank in August, 2004. We showed
that, surprisingly, the codon usage of the genomes can be very closely approximated by a multi-
linear function of their genomic G+C-content (more precisely, by two similar functions, one for
eubacterial genomes and the other one for archaea). In the 64-dimensional space of all possible triplet
distributions the bacterial codon distributions are close to two curves, coinciding at their AT-rich ends
and diverging at their GC-rich ends. When moving along these curves we meet all naturally occurred
7-cluster structures in the following order: “parallel triangles” for the AT-rich genomes (G+C-content
is around 25%), then “perpendicular triangles” for G+C-content is around 35%, switching gradually
to the degenerated case in the regions of GC=50% and, finally, the degeneracy is resolved in one
plane leading to the flower-like symmetric pattern (starting from GC=60%). All these events can be
illustrated using the material from the web-site we established [7].

The properties of the 7-cluster structure have natural interpretations in the language of Hidden
Markov Models. Locations of clusters in multdimensional space correspond to in-state transition
probabilities, the way how clusters touch each other reflects inter-state transition probabilities. Our
clustering approach is independent on the Hidden Markov Modeling, though can serve as a source of
information to adjust the learning parameters.

In our paper we analyzed only triplet distributions. It is easy to generalize our approach for
longer (or shorter) words. In-phase hexamers, for example, are characterized by the same 7-cluster
structure. However, our experience shows that the most of information is contained in triplets: the
correlations in the order of codons are small and the formulas (1) work reasonably well. Other papers
confirm this observation (see, for example, [1], [12]).

The subject of the paper has a lot of possible continuations. There are several basic questions:
how one can explain the one-dimensional model of codon usage or why the signatures in the middle
of G+C-content scale have palindromic structures? There are questions about how our model is
connected with codon bias in translationally biased genomes: the corresponding cluster structure is
the second hierarchical level or the “thin structure” in every cluster of the 7-cluster structure (see, for
example, [6]). Also the following question is important: is it possible to detect and use the universal
7-cluster structure for higher eukaryotic genomes, where this structure also exists (see [24]), but is
hidden by the huge non-coding cluster?

The information about the 7-cluster structure can be readily introduced into existing or new
software for gene-prediction, sequence alignment and genome classification.
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